Lu Qiuying

By: / From: Shanghai Lixin University of Accounting and Finance/ Date:0120,2021/ View:10Set up the

Lu Qiuying

 

 

 

TitleProfessor

School of Statistics and Mathematics

Shanghai Lixin University of Accounting and Finance,

No. 995 Shangchuan Rd, Shanghai.

Tel: (86-21)

Email: luqy@lixin.edu.cn

 

AREAS OF INTEREST

Teaching: Ordinary Differential Equation

Research: Ordinary Differential Equation and Dynamics System

 

EDUCATION BACKGROUND

09/2006-06/2009   East China Normal University, Ph.D. of Mathematics

07/2006-12/2018   Université Lille 1, Ph.D. of Mathematics

09/2003-06/2006 East China Normal University, Masters Degree of Mathematics

09/1999.9-06/2003 Qufu Normal University, Bachelors Degree of Mathematics

 

EXPERIENCE

Full Time

11 years

 

Courses Taught

Ordinary Differential Equations, Calculus, Linear Algebra, Probability and Statistics

 

PUBLICATIONS

1. V. Naudot, J.D. Mireles James, Q. Lu, High-order parameterization of (un)stable manifolds for hybrid maps: Implementation and applications, Communications in Nonlinear Science and Numerical Simulation, 53(2017),184-201.

2. Q. Lu, V. Naudot, Bifurcation complexity from orbit-flip homoclinic orbit of weak type, International Journal of Bifurcation and Chaos, 26: 4(2016), 1650059,1-16.

3. Q. Lu, G. Deng, H. Luo, Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type, Electronic Journal of Qualitative Theory of Differential Equations, 71(2015),1-12.

4. Q. Lu, G. Deng, W. Zhang, Random attractors for stochastic Ginzburg-Landau equation on unbounded domains, Abstract and Applied Analysis, 2014.

5. T. Zhou, W. Zhang, Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288–305.

6. G. Deng, Q. Lu, N. Liu, A general method for studying quadratic perturbations of the third-order lyness difference equation, Advances in Difference Equations, 193(2013), 1-9.

7. Z. Qiao, D. Zhu, Q. Lu, Bifurcation of a heterodimensional cycle with weak inclination flip, Discrete and Continuous Dynamical Systems Series B, 17:3 (2012), 1009 -1025.

8. Q. Lu, D. Zhu, F. Geng, Weak type heterodimensional cycle bifurcation with orbit-flip, Science China Mathematics, 54: 6(2011), 1175-1196.

9. Q. Lu, W. Zhang, Positive solutions for the nth-order delay differential system with multi-parameter, Applied Mechanics and Materials, 50-51, (2011), 185-189.

10. Q. Lu, Z. Qiao, T. Zhang, D. Zhu, Heterodimensional cycle bifurcation with orbit-flip, International Journal of Bifurcation and Chaos, 20:2 (2010), 491-508.

11. Q. Lu, Stability of SIRS system with random perturbations, Physica A, 388:18(2009), 3677-3686.

12. Q. Lu, Codimension 2 bifurcation of twisted double homoclinic loops, Computers & Mathematics with Applications, 57:7 (2009), 1127-1141.

13. Q. Lu, Non-resonance 3D homoclinic bifurcation with inclination-flip, Chaos, Soliton & Fractals, 42:5(2009), 2597-2605.

14. Z. Qiao, Q. Lu, D. Zhu, Bifurcation of rough heteroclinic loop with orbit and inclination flips, Nonlinear Analysis: Real World Applications, 10 (2009), 611-628.


返回原图
/